Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species.

Identifieur interne : 002E68 ( Main/Exploration ); précédent : 002E67; suivant : 002E69

Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species.

Auteurs : D. Macaya-Sanz [Espagne] ; L. Suter ; J. Joseph ; T. Barbará ; N. Alba ; S C González-Martínez ; A. Widmer ; C. Lexer

Source :

RBID : pubmed:21587301

Descripteurs français

English descriptors

Abstract

Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.

DOI: 10.1038/hdy.2011.35
PubMed: 21587301
PubMed Central: PMC3199930


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species.</title>
<author>
<name sortKey="Macaya Sanz, D" sort="Macaya Sanz, D" uniqKey="Macaya Sanz D" first="D" last="Macaya-Sanz">D. Macaya-Sanz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Ecology and Genetics, Center of Forest Research, CIFOR-INIA, Carretera de A Coruña, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Forest Ecology and Genetics, Center of Forest Research, CIFOR-INIA, Carretera de A Coruña, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Suter, L" sort="Suter, L" uniqKey="Suter L" first="L" last="Suter">L. Suter</name>
</author>
<author>
<name sortKey="Joseph, J" sort="Joseph, J" uniqKey="Joseph J" first="J" last="Joseph">J. Joseph</name>
</author>
<author>
<name sortKey="Barbara, T" sort="Barbara, T" uniqKey="Barbara T" first="T" last="Barbará">T. Barbará</name>
</author>
<author>
<name sortKey="Alba, N" sort="Alba, N" uniqKey="Alba N" first="N" last="Alba">N. Alba</name>
</author>
<author>
<name sortKey="Gonzalez Martinez, S C" sort="Gonzalez Martinez, S C" uniqKey="Gonzalez Martinez S" first="S C" last="González-Martínez">S C González-Martínez</name>
</author>
<author>
<name sortKey="Widmer, A" sort="Widmer, A" uniqKey="Widmer A" first="A" last="Widmer">A. Widmer</name>
</author>
<author>
<name sortKey="Lexer, C" sort="Lexer, C" uniqKey="Lexer C" first="C" last="Lexer">C. Lexer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21587301</idno>
<idno type="pmid">21587301</idno>
<idno type="doi">10.1038/hdy.2011.35</idno>
<idno type="pmc">PMC3199930</idno>
<idno type="wicri:Area/Main/Corpus">002E10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E10</idno>
<idno type="wicri:Area/Main/Curation">002E10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E10</idno>
<idno type="wicri:Area/Main/Exploration">002E10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species.</title>
<author>
<name sortKey="Macaya Sanz, D" sort="Macaya Sanz, D" uniqKey="Macaya Sanz D" first="D" last="Macaya-Sanz">D. Macaya-Sanz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Ecology and Genetics, Center of Forest Research, CIFOR-INIA, Carretera de A Coruña, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Forest Ecology and Genetics, Center of Forest Research, CIFOR-INIA, Carretera de A Coruña, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Suter, L" sort="Suter, L" uniqKey="Suter L" first="L" last="Suter">L. Suter</name>
</author>
<author>
<name sortKey="Joseph, J" sort="Joseph, J" uniqKey="Joseph J" first="J" last="Joseph">J. Joseph</name>
</author>
<author>
<name sortKey="Barbara, T" sort="Barbara, T" uniqKey="Barbara T" first="T" last="Barbará">T. Barbará</name>
</author>
<author>
<name sortKey="Alba, N" sort="Alba, N" uniqKey="Alba N" first="N" last="Alba">N. Alba</name>
</author>
<author>
<name sortKey="Gonzalez Martinez, S C" sort="Gonzalez Martinez, S C" uniqKey="Gonzalez Martinez S" first="S C" last="González-Martínez">S C González-Martínez</name>
</author>
<author>
<name sortKey="Widmer, A" sort="Widmer, A" uniqKey="Widmer A" first="A" last="Widmer">A. Widmer</name>
</author>
<author>
<name sortKey="Lexer, C" sort="Lexer, C" uniqKey="Lexer C" first="C" last="Lexer">C. Lexer</name>
</author>
</analytic>
<series>
<title level="j">Heredity</title>
<idno type="eISSN">1365-2540</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Chimera (genetics)</term>
<term>Chromosome Segregation (MeSH)</term>
<term>Chromosomes, Plant (MeSH)</term>
<term>Europe (MeSH)</term>
<term>Gene Flow (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Genetic Speciation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Heterozygote (MeSH)</term>
<term>Inbreeding (MeSH)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>Odds Ratio (MeSH)</term>
<term>Polymorphism, Genetic (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Reproduction (genetics)</term>
<term>Synteny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles (MeSH)</term>
<term>Chimère (génétique)</term>
<term>Chromosomes de plante (MeSH)</term>
<term>Croisement consanguin (MeSH)</term>
<term>Déséquilibre de liaison (MeSH)</term>
<term>Europe (MeSH)</term>
<term>Flux des gènes (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Hétérozygote (MeSH)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Odds ratio (MeSH)</term>
<term>Polymorphisme génétique (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Reproduction (génétique)</term>
<term>Spéciation génétique (MeSH)</term>
<term>Synténie (MeSH)</term>
<term>Ségrégation des chromosomes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Europe</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chimera</term>
<term>Populus</term>
<term>Reproduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chimère</term>
<term>Populus</term>
<term>Reproduction</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Chromosome Segregation</term>
<term>Chromosomes, Plant</term>
<term>Gene Flow</term>
<term>Genes, Plant</term>
<term>Genetic Speciation</term>
<term>Genotype</term>
<term>Heterozygote</term>
<term>Inbreeding</term>
<term>Linkage Disequilibrium</term>
<term>Odds Ratio</term>
<term>Polymorphism, Genetic</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Chromosomes de plante</term>
<term>Croisement consanguin</term>
<term>Déséquilibre de liaison</term>
<term>Europe</term>
<term>Flux des gènes</term>
<term>Gènes de plante</term>
<term>Génotype</term>
<term>Hétérozygote</term>
<term>Marqueurs génétiques</term>
<term>Odds ratio</term>
<term>Polymorphisme génétique</term>
<term>Spéciation génétique</term>
<term>Synténie</term>
<term>Ségrégation des chromosomes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21587301</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2540</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Heredity</Title>
<ISOAbbreviation>Heredity (Edinb)</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species.</ArticleTitle>
<Pagination>
<MedlinePgn>478-86</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/hdy.2011.35</ELocationID>
<Abstract>
<AbstractText>Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Macaya-Sanz</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecology and Genetics, Center of Forest Research, CIFOR-INIA, Carretera de A Coruña, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Suter</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Joseph</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barbará</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alba</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>González-Martínez</LastName>
<ForeName>S C</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Widmer</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lexer</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Heredity (Edinb)</MedlineTA>
<NlmUniqueID>0373007</NlmUniqueID>
<ISSNLinking>0018-067X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020090" MajorTopicYN="N">Chromosome Segregation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005060" MajorTopicYN="N" Type="Geographic">Europe</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051456" MajorTopicYN="N">Gene Flow</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049810" MajorTopicYN="N">Genetic Speciation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006579" MajorTopicYN="N">Heterozygote</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007178" MajorTopicYN="N">Inbreeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016017" MajorTopicYN="N">Odds Ratio</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012098" MajorTopicYN="N">Reproduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21587301</ArticleId>
<ArticleId IdType="pii">hdy201135</ArticleId>
<ArticleId IdType="doi">10.1038/hdy.2011.35</ArticleId>
<ArticleId IdType="pmc">PMC3199930</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 2001 Mar;10(3):551-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11298968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2001 Apr 22;268(1469):861-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11345333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Dec;159(4):1701-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2004 Jan 7;271(1534):97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15002777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Aug;109(3):451-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15168022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Apr;14(4):1045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15773935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2005 Aug;95(2):118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Nov;171(3):1289-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2005 Aug;59(8):1633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16329237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Apr;172(4):2465-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Feb;98(2):74-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jun;176(2):1059-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17435235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2008 Jan;100(1):59-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17895905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(2):506-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Dec 12;2(12):e1294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18074018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Apr;66(6):619-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18247136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 May 30;4(5):e1000082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18574519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):3023-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18579476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Jan;102(1):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18648386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Jan;102(1):4-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18781167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Dec;102(6):997-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18845663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Feb;24(2):59-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19101057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jan;181(2):498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Feb;18(3):375-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(8):1638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Oct;186(2):699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20679517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2008 Jan;8(1):103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2008 Jan;8(1):188-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Dec;53(6):1734-1743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Communauté de Madrid</li>
</region>
<settlement>
<li>Madrid</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Alba, N" sort="Alba, N" uniqKey="Alba N" first="N" last="Alba">N. Alba</name>
<name sortKey="Barbara, T" sort="Barbara, T" uniqKey="Barbara T" first="T" last="Barbará">T. Barbará</name>
<name sortKey="Gonzalez Martinez, S C" sort="Gonzalez Martinez, S C" uniqKey="Gonzalez Martinez S" first="S C" last="González-Martínez">S C González-Martínez</name>
<name sortKey="Joseph, J" sort="Joseph, J" uniqKey="Joseph J" first="J" last="Joseph">J. Joseph</name>
<name sortKey="Lexer, C" sort="Lexer, C" uniqKey="Lexer C" first="C" last="Lexer">C. Lexer</name>
<name sortKey="Suter, L" sort="Suter, L" uniqKey="Suter L" first="L" last="Suter">L. Suter</name>
<name sortKey="Widmer, A" sort="Widmer, A" uniqKey="Widmer A" first="A" last="Widmer">A. Widmer</name>
</noCountry>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="Macaya Sanz, D" sort="Macaya Sanz, D" uniqKey="Macaya Sanz D" first="D" last="Macaya-Sanz">D. Macaya-Sanz</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21587301
   |texte=   Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21587301" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020